Particle Swarm Optimization

Illusionna

00:00, Saturday 15th November, 2025

The formula of the Particle Swarm Optimization algorithm is as follows:

$$v_n(t+1) = \omega(t) \cdot v_n(t) + c_1 r_1 \cdot [p_n - x_n(t)] + c_2 r_2 \cdot [g - x_n(t)]$$

The iterative expression is as follows:

$$x_n(t+1) = x_n(t) + v_n(t+1)$$

The inertia factor $\omega(t)$ can be a linearly decreasing weight function or a constant:

$$\omega(t) = \begin{cases} \omega_{\text{max}} - \frac{\omega_{\text{max}} - \omega_{\text{min}}}{t_{\text{max}}} \times t & \omega_{\text{max}} \approx 0.9, \ \omega_{\text{min}} \approx 0.4 \\ C \in [0.6, \ 0.75] \end{cases}$$

The parameters is elaborated as:

- n: the amount of particles (usually $20 \sim 40$).
- $v_n(t)$: the velocity of the t epoch of the n-th particle.
- $x_n(t)$: the distance of the t epoch of the n-th particle.
- c_1 : the individual learning factor of the particle.
- c_2 : the swarm learning factor of the particle.
- r_1 : the random float number is between 0 and 1.
- r_2 : the random float number is between 0 and 1.
- p_n : the best solution of the *n*-th particle.
- \bullet g: the global optimal solution of particle swarm.

Some empirical values are provided by scholars: $Clerc(c_1 = c_2 = 2.05)$, $Carlisle(c_1 = 2.8, c_2 = 1.3)$, $Trelea(\omega = 0.6, c_1 = c_2 = 1.7)$, $Eberhart(\omega = 0.729, c_1 = c_2 = 1.494)$.